Exercícios sobre o cálculo de derivadas no ponto (2/3)

Em continuidade à lista de exercícios sobre regras de derivação, agora veremos como calcular algumas derivadas no ponto. A parte 1 deste tópico se encontra aqui.


Calcule a derivada no ponto $$x = 1$$ das funções:

a) $$y = -6x^{2} +10$$
b) $$y = 2 – 5x^{4}$$
c) $$y = 3x^{7} – 3x^{3}$$
d) $$y = 3e^{x}$$
e) $$y = 5\ln(x)$$

 

Exercícios sobre o cálculo de derivadas no ponto (2/3)

 

Resolução

Caso já tenha feito os exercícios, então este é o momento de conferir as resoluções.


a) $$f(x) = -6x^{2} +10$$

$$f'(x) = -12x$$

$$f'(1) = \boxed{-12}$$




b) $$f(x) = 2 – 5x^{4}$$

$$f'(x) = –20x^{3}$$

$$f'(1) = -20 \cdot 1^{3} =\boxed{ -20}$$




c) $$f(x) = 3x^{7} – 3x^{3}$$

$$f'(x) = 21x^{6} – 9x^{2}$$

$$f'(1) = 21 - 9 = \boxed{12}$$




d) $$f(x) = 3e^{x}$$

$$f'(x) = 3e^{x}$$

$$f'(1) = \boxed{3e}$$




e) $$f(x) = 5\ln(x)$$

$$f'(x) = \frac{5}{x}$$

$$f'(1) = \boxed{5}$$


Neste artigo calculamos mais algumas derivadas através da aplicação de Regras de Derivação. Em específico, vimos como calcular derivadas em determinados pontos de uma função. No próximo artigo, resolveremos mais algumas derivadas no ponto.



Para citar esse artigo:

Comentários